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Chapter 3
Disease Ecology

Sadie Ryan

1  Disease Ecology: An Overview

Disease ecology is a branch of ecology that provides a framing for the processes of 
disease transmission; using the backdrop of quantitative ecology, it differs from 
related disciplines such as epidemiology, in that specifying the system and mecha-
nisms in the modeling approach is explicit. While epidemiology is traditionally 
defined as describing patterns of health states and events in a population, disease 
ecology generally describes the mechanisms and dynamics giving rise to those pat-
terns. However, as Brandell et al. (2020) point out, disease ecology is a new and 
rapidly expanding research focus within ecology and evolutionary biology, integrat-
ing across many fields in biological science. Largely arising from foundational 
work in population models of diseases by Anderson and May (Anderson and 
May 1991; Anderson 1979), disease ecology has been expanding and changing, 
spanning theoretical and applied questions in human, animal, and plant systems, 
from zoonotic disease emergence, to crop disease impacts, to livestock outbreaks, to 
better understanding population immunological dynamics in wholly anthroponotic 
systems (Bradley and Altizer 2007; Chowell et  al. 2008; Ezenwa 2004; Rahman 
et al. 2010; Taylor et al. 2019).

One of the classic approaches to modeling infectious diseases in disease ecology 
has been coined the “compartmental model.” This is both a framing that is concep-
tual, in that the population transmission process is divided into compartments, 
which can be illustrated with flowchart notation, and also allows for different math-
ematical specifications to construct a model of the system. I will describe one of the 
basic versions here, the SIR model (Susceptible, Infected/Infectious, Recovered). 
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This model arises from concepts in Anderson and May’s early work and divides the 
population into three categories of infectious state, the compartments S, I, and 
R. These are connected by flow arrows, or rates at which conversion between cat-
egories occurs.

Box 3.1 SIR Modeling Basics
• For infectious disease spread within a population, we assume a starting 

point of a naive and uninfected population, Susceptible—S.
• As susceptible individuals contact infected individuals, and become 

infected, they transition to Infected, I.
• If we assume that Infected individuals recover from infection, have immu-

nity to the infection, and do not die of the infection, they transition to the 
recovered class, R.

 

We refer to this as S-I-R progression, and the SIR model is a fundamental 
model in disease modeling. We assume a closed population, with no birth or 
death dynamics, and this leads to simple progression.

In this case illustration, we see that in a population of 100 individuals, the 
susceptible pool, S, is drained as it becomes infected, I, however, I transitions 
to recovered, R, also reducing I.

This means that the epidemic rises to a peak, and declines, and when and 
how high are determined by the rates of transitions between the three states in 
the population. These population transitions for a simple infectious disease 
system illustrate how epidemic peaks occur.
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Box 3.2 R0: The Basic Reproductive Number
In order to understand and even predict how a disease will progress through a 
population, deriving a measure of this spread that may be consistent across 
locations is important. How long are people infected for? How easily is it 
transmitted? These components of the rates may be similar, while the popula-
tions experiencing it may differ, leading to different epidemic outcomes. We 
thus use a measure called R0, pronounced “R naught” by British English 
speakers, and sometimes called “R-zero” in the USA. This is defined as the 
average number of secondary infections that an infected host produces in an 
otherwise susceptible population.

R0 is a threshold criterion:

If R0 < 1, disease dies out
If R0 > 1, disease persists

Bringing together our concepts for the compartmental model illustration 
on the process of an infectious disease moving through a population, and our 
threshold criterion for establishment and spread, R0, we can use rate models 
as a function of time (t) to describe the movement of S to I and I to R, in terms 
of the transmission rate β, and the recovery rate γ.

Thus, R0 is a function of β and γ, because you can infect β susceptibles, but 
only have 1/γ time in which to do it:

 R0 = β γ/  

 

The system of equations for changes in infection status are:

 d dS t SI/ = −β  
 d dI t SI I/ = −β γ  
 d dR t I/ = γ  
We express these rate equations as a system of differential equations here, 

treating the population as fixed (no birth or death events). Modifications of 
this system of equations can be introduced by adding density dependence, 
using proportions instead of counts, making this a time-stepped system 
instead, adding stochasticity in rates or population processes, and so on. This 
simple deterministic system is a basic frame on which to expand.

R0 for common seasonal and pandemic flu ranges from 1 to 3, and more 
precise estimates have been obtained for historical outbreaks of influenza with 
well-documented records. The 2002 outbreak of SARS had an R0 of 3, except in 
the case of “super-spreaders,” which changed the dynamics of disease transmis-
sion considerably. The vaccine-preventable childhood diseases have very high 
R0 values: measles 10–15, pertussis 16–18, and polio 8–12, underscoring the 
importance of maintaining population-level vaccination rates for these diseases.
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The utility of a compartmental model, or a population dynamic approach, to 
modeling disease transmission is that health interventions can also be explicitly 
modeled, or simulated, to assess their impact. For example, modifying the encoun-
ter rate between susceptible (S) and infected (I) individuals by isolating infected 
individuals (e.g., lockdown, quarantines) will reduce the rate at which the popula-
tion moves into the infected state. In the case of COVID-19, we have seen that 
hospital capacity has frequently been a concern, and simply slowing the rate of 
infected individuals needing those hospital beds was essential. These models also 
allow for assessing vaccination rates—in this case, individuals can move directly 
from the susceptible (S) pool to the recovered (R) pool, leading to a much lower 
number of individuals ever becoming infected, and with a sufficient rate of effective 
vaccination, transmission will die out. Expanded versions of compartmental models 
such as this have been used to explore intervention strategies throughout the 
COVID-19 pandemic.

A key feature of disease ecology is specific system description inherent to the 
analysis or hypothesis tested. For example, in a climate-driven vector-borne disease 
system, the model used to describe the relationship between climate and disease 
burden might be described statistically as a linear relationship, or correlation, 
between a component of the climate (e.g., temperature) and cases reported. This 
may be appropriate for certain values of the system (i.e., over part of a range of 
temperatures). The mechanistic model approach, however, would rather specify 
empirical relationships between climate variables and parts of the transmission 
cycle sensitive and agnostic to temperature and other variables-such as mosquito 
survival, reproduction, biting rates, parasite development rate, and human recovery-
in order to specify the system, describe the ecology, parameterize it from first prin-
ciples (i.e., specifying empirical relationships of system components), and build a 
system model and then validate it with data. In particular, ecological models allow 
disease ecologists to specify system nonlinearities, which can lead to important 
findings in the overall system, when confronted with real-world data. In this exam-
ple of a vector-borne disease system, the relationship between temperature and 
transmission components is nonlinear, which we know from ecophysiological prin-
ciples for organisms; if the organism, proteins in the organism, and enzymatic reac-
tions driving the organism are too cold, the system will not start. At the other 
extreme of high heat, all of these will break down, so there are bounds, or thermal 
limits, to ecophysiological processes. This translates to a nonlinear relationship 
between components of transmission and temperature; and for mosquito-borne dis-
eases particularly, the relationship between vector and parasite, and their combined 
life history responses, creates a unique vector-pathogen transmission curve for each 
vector-pathogen pair when closely examined with empirical data. The shape of that 
nonlinearity is best defined by fitting empirical data, collected in controlled experi-
mental conditions; for more details on this approach, as applied to multiple vector-
borne disease systems, see Miazgowicz et al. (2020), Mordecai et al. (2019), Ryan 
et al. (2019), and Shocket et al. (2018).

As COVID-19 spread throughout the globe, the relevance of disease ecologists 
in two particular foci came into recognition. Disease ecology, as the 
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interdisciplinary home of spanning multiple fields, has been concerned with assess-
ing and addressing the ecology of emerging pathogens and diseases, through direct 
methods of outbreak detection (Bermejo et al. 2006; Leroy et al. 2004), describing 
and predicting processes leading to pathogen spillover (Daszak et  al. 2000; Patz 
et al. 2000), and using evolutionary biology methods to trace spillover events and 
novel disease threats, such as using phylogenetics to demonstrate potential sources 
of pathogens in wildlife. The back-and-forth of early discovery in possible sources 
of spillover of the SARS-CoV-2 virus led to hefty debate about whether pangolins 
(Lam et al. 2020), bats sold for consumption in markets in Wuhan, China (Andersen 
et al. 2020), or another as yet undefined wildlife reservoir or spillover and adapta-
tion in humans—and even speculation that this was a laboratory-developed strain—
was responsible for sparking the pandemic. As the conversation shifted to targeting 
wildlife trade routes, and quickly led to outcry in conservation biology calling for 
wholesale wildlife trade bans, disease ecologists involved in viral spillover predic-
tion were asked why they did not predict this particular pandemic; this echoed ques-
tions directed at scientists during the 2014 Ebola outbreak, which led to blame 
lodged at scientists predicting the spread incorrectly and “allowing” Ebola to spread. 
While research into SARS-like coronaviruses has been ongoing since the SARS 
spillover and outbreak in 2002, coronaviruses have remained a rather understudied 
group of viruses, and it wasn’t until 6 years later that the origin of the 2002 SARS 
epidemic was attributed to spillover from bats. However, the pathway from bats to 
humans is still not definitively described as the viruses found in horseshoe bats are 
a family of viruses that likely gave rise to the spillover virus that triggered the 2002 
SARS outbreak (Hu et al. 2017). A paper that traced SARS-CoV to civets in 2004 
(Tu et al. 2004), via surveying animals in multiple farms and markets, noted that 
most civets on farms did not show antibodies, except those in one market in 
Guangzhou with about 80% antibody presence, suggesting that civets were catching 
and circulating the virus at the market, via overcrowding and mixing of various spe-
cies there. This underscores the larger message from many disease ecologists that, 
while we cannot necessarily predict specific spillover events and pathogens, we can 
predict that they will occur. The ecology of the system of markets provides multiple 
different kinds of encounters—overcrowding leading to stress, animals experienc-
ing nonhuman cross-species interactions, heightened transmission potential with 
humans, and experiencing multispecies interactions and potential for different 
transmission modes (e.g., respiratory, blood contamination, fecal-oral, consumption 
of uncooked or contaminated products); it is worth noting here that this wet market 
phenomenon occurs globally, and in the more industrialized animal food chains of 
the world, a similar set of multiple opportunities for exposures, crowding, increased 
stress, and susceptibility exists, leading to livestock disease mixing and domestic 
spillover events in the agricultural setting. Thus, from a systems perspective, disease 
ecologists are at the forefront of describing conditions conducive to spillover, lever-
aging wet lab bench tools to track and trace pathogens, and providing predictive 
modeling frameworks to guide and inform policy in the prevention and surveillance 
for emerging pathogens.
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The other major role of disease ecology, which overlapped heavily with the role 
of epidemiologists and global health experts in describing the COVID-19 epidemic, 
was to provide models capturing transmission dynamics in a meaningful way to 
advise policy and intervention. COVID-19 saw the arrival of data-intensive on-the- 
fly web-hosted dashboards for visualizing data and modeling outputs; the rise of 
ArcGIS Pro dashboard tools, and large-scale visualization tools like Tableau, and R 
Shiny platforms transformed the way disease modelers could communicate with the 
public. While early enthusiasts fitted exponential curves to data, to show how rap-
idly the increases in case numbers were occurring, this provided a top-down means 
to describe the underlying mechanisms of spread in populations. The compartmen-
tal modeling approach was quickly adopted in many forms by multiple modeling 
teams to describe the underlying mechanisms—encounters between population 
components that might result in transmission, S-I dynamics fit to data to estimate 
force of infection or to capture R0, and the basic reproductive rate of disease. From 
there, research teams tackled questions of interventions, of exceeding ICU capacity, 
of testing the degree of intervention, and of its reducing impacts to hospital capac-
ity, human caseloads, and deaths.

As computational tools available to disease ecologists increase in efficiency, 
using ever more elegant algorithms and estimation, and the speed of processing 
through the available data increases, so we become more aware of the remaining 
gaps. It is hard to find a large-scale disease ecology study that does not conclude 
with a call for more data collection. This is a message that simply increases in pro-
portion to the complexity of systems described. The gap in global surveillance of 
human infectious diseases is dwarfed by the gap in pathogen surveillance data avail-
ability for nonhuman animal and plant systems. COVID-19 has highlighted a need 
to fill these gaps, and we have seen a wealth of new modeling approaches to under-
standing potential spillover and spillback and redefining spillover boundaries in 
urban and agricultural landscapes. In addition, as disease ecology becomes better 
equipped to take on impacts of climate and land cover change, so the need for better 
descriptions of these at scales relevant to mechanisms of transmission increases. For 
example, we have a proliferation of satellite data available in near real-time, for 
multiple scales of observations—but it is still very complicated to describe the 
microclimate habitat needs of an individual tick at ground level, to incorporate that 
into a model of potential disease spread. In a time where we are recognizing that 
humans on landscapes are interacting with and transforming the ecology in ways 
that make us vulnerable to pathogen spillover, understanding the scale and mecha-
nisms of these systems and describing them in useful predictive ways requires the 
tools of the disease ecologist and access to sufficient data to refine and validate 
models. Disease emergence and spread has shaped human history and the ecology 
of the planet, and will continue to, into the future. COVID-19 has emphasized the 
various roles that disease ecologists play in their interdisciplinary approach to 
understanding both the emergence and spread components of pandemics and how 
that approach can inform understanding for interventions and public health 
messaging.
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