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Summary

1. Understanding the mechanisms underlying biological systems, and ultimately, predicting their behaviours in

a changing environment, requires overcoming the gap between mathematical models and experimental or obser-

vational data. Differential equations (DEs) are commonly used to model the temporal evolution of biological

systems, but statistical methods for comparing DE models to data and for parameter inference are relatively

poorly developed. This is especially problematic in the context of biological systems where observations are often

noisy and only a small number of time points may be available.

2. The Bayesian approach offers a coherent framework for parameter inference that can account for multiple

sources of uncertainty, while making use of prior information. It offers a rigorous methodology for parameter

inference, as well as modelling the link between unobservable model states and parameters, and observable

quantities.

3. We present deBInfer, a package for the statistical computing environment R, implementing a Bayesian

framework for parameter inference in DEs. deBInfer provides templates for the DE model, the observation

model and data likelihood, and the model parameters and their prior distributions. A Markov chain Monte

Carlo (MCMC) procedure processes these inputs to estimate the posterior distributions of the parameters and

any derived quantities, including the model trajectories. Further functionality is provided to facilitate MCMC

diagnostics, the visualization of the posterior distributions of model parameters and trajectories, and the use of

compiledDEmodels for improved computational performance.

4. The templating approach makes deBInfer applicable to a wide range of DE models. We demonstrate its

application to ordinary and delayDEmodels for population ecology.

Key-words: chytridiomycosis, delay-differential equation, Markov chain Monte Carlo, model

calibration, ordinary differential equation, parameter estimation

Introduction

The use of differential equations (DEs) to model dynamical

systems has a long and fruitful tradition in biological disci-

plines such as epidemiology, population ecology and physiol-

ogy (Volterra 1926; Kermack & McKendrick 1927). As DE

models are used in an attempt to understand biological sys-

tems, it is becoming clear that the simplest models cannot cap-

ture the rich variety of dynamics observed in them (Evans

et al. 2013). However, more complex models come at the

expense of additional states and/or parameters and require

more information for parameterization. Further, as most

observational data sets contain uncertainty, model identifica-

tion and fitting become increasingly difficult (Lonergan 2014).

Keeping complex models tractable and testable, and linking

modelled quantities to data, thus requires statistical methods

of similar sophistication. This is particularly relevant in

biology, where data series are often short or noisy, and where

the scope for observational or experimental replication may be

limited.

A vast array of analytical and numerical methods exists

for solving DE models as well as exploring their properties

and the effect of parameter values on their dynamics (Jones

2003; Smith 2011). In some cases, parameters may be derived

from first principles or measured directly, but often some or

all parameters cannot be determined by either approach, and

it is necessary to estimate them from an observational data

set.

Parameter estimation methods for DE models, and their

implementation as computational tools, are still less well devel-

oped than the aforementioned system dynamics tools and are

a topic of active research.

Traditional parameter inference, also known as ‘model cali-

bration’ or ‘solving inverse problems’, has, generally, been

based on the maximum-likelihood principle (Brewer et al.

2008; Aster, Borchers & Thurber 2011), which assumes the*Correspondence author. E-mail: pboesu@gmail.com
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existence of a true modelMtrue giving rise to a true data set

Ytrue such that

MtrueðhÞ ¼ Ytrue; eqn 1

where h is the parameter set for the model. The additional

assumption that the observations Y arise from a sum of

Ytrue and measurement noise that is independently and

normally distributed then leads to the least squares solu-

tion that is found by minimizing the Euclidian norm of

the residual,

kMðhÞ � Yk2: eqn 2

This approach has been applied to both ordinary differential

equations (ODEs) (e.g. Baker et al. 2005) and simple delay-

differential equations (DDEs) (e.g. Horbelt, Timmer & Voss

2002). It allows for point estimates of the parameters, as well

as the estimation of normal confidence intervals for the

parameters and the correlations between them. However, these

error bounds are local in nature and thus offer limited insight

into the variability that is to be expected in the model outputs.

Bayesian approaches for parameter estimation in complex,

nonlinear models were established early on (e.g. Tarantola &

Valette 1982; Poole & Raftery 2000), and they are being

applied with increasing frequency to a broad range of biologi-

cal models (e.g. Coelho, Codec�o & Gomes 2011; Voyles et al.

2012; Johnson, Pecquerie & Nisbet 2013; Smith et al. 2015).

Recentmethodological advances have included the application

of Hamiltonian Monte Carlo to ODE models, realized in the

software package Stan (Carpenter et al. 2016), particle

MCMC methods (Andrieu, Doucet & Holenstein 2010),

approximate Bayesian computation (ABC; e.g. Liu & West

2001; Toni et al. 2009) and so-called plug-and-play approaches

(e.g. He, Ionides & King 2009). A suite of these methods are

implemented in the R package pomp (King et al. 2016). While

many statistical approaches, including the one presented here,

treat the numerical solution of the DE model as exact, there

has also been work towards quantifying the uncertainty con-

tained in the numerical DE solutions themselves (Chkrebtii

et al. 2015).

In the Bayesian approach, the model, its parameters and the

data are viewed as random variables. This approach to param-

eter inference is attractive, as it provides a coherent framework

that allows the incorporation of uncertainty in the observa-

tions and the process, and it relaxes the assumption of normal

errors. It provides us not only with full probability distribu-

tions describing the parameters, but also with probability dis-

tributions for any quantity derived from them, including the

model trajectories. Further, the Bayesian framework naturally

lets us incorporate prior information about the parameter val-

ues. This is particularly useful when there are known biological

or theoretical constraints on parameters. For example, many

biological parameters, such as body size, cannot take on nega-

tive values. Using informative priors can help constrain the

parameter space of the estimation procedure, aiding with

parameter identifiability.

We explain the rationale behind the Bayesian approach

below and describe our implementation of a fitting routine

based on aMarkov chainMonte Carlo (MCMC) sampler cou-

pled to a numerical DE solver. We illustrate the application of

deBInfer to a simple example, the logistic differential equa-

tion, and amore complexmodel of the reproductive life history

of the fungal pathogenBatrachochytrium dendrobatidis.

Materials andmethods

The purpose ofdeBInfer is to estimate the probability distribution of

the parameters of a user-specified DE modelM, given an empirical

data set Y, and accounting for the uncertainty in the data. The model

takes the general form

M� dx

dt
¼ fðxt; t; hÞ eqn 3

where x is a vector of variables evolving with time; f is a functional

operator that takes a time input and a vector of continuous functions

xtðhÞ and generates the vector dx
dt as output; and h denotes a set of

parameters. Further, we define xtðsÞ ¼ xðtþ sÞ. When all s 2 s = 0,

the model is represented by a system of ODEs; when any s < 0, the

model is represented by a system of delay-differential equations

(DDEs). For the purposes of inference, s is simply a subset of the

parameters h that are to be estimated.deBInfer implements inference

for ODEs as well asDDEswith constant delays.

Using Bayes’s theorem (Clark 2007), we can calculate the posterior

distribution of the model parameters, given the data and the prior

information as

PrðhjYÞ ¼ PrðYjhÞPrðhÞR
PrðYjhÞPrðhÞdh eqn 4

where Pr() denotes a probability, Y denotes the data and h denotes the
set of model parameters. The product in the numerator is the joint dis-

tribution, which is made up of the likelihood PrðYjhÞ orLðYjhÞ, which
gives the probability of observing Y given the deterministic model

MðhÞ, and the prior distribution Pr(h), which represents the knowledge
about h before the data were collected. The denominator represents the

marginal distribution of the data PrðYÞ ¼ R PrðYjhÞPrðhÞdh. Before
the data are collected, Y is a random variable, but after they are col-

lected, the marginal distribution becomes a fixed quantity. This means,

the inferential problem reduces to

PrðhjYÞ / PrðYjhÞPrðhÞ: eqn 5

that is finding a specific proportionality that allows the posterior

PrðhjYÞ to be a proper probability density (or mass) function that inte-

grates to 1.

Closed form solutions for the posterior are practically impos-

sible to obtain for complex nonlinear models with more than a

few parameters, but they can be approximated, for example, by

combining the MCMC algorithm with a Metropolis–Hastings

sampler (Clark 2007). This yields a sequence of likelihoods that

follow a frequency distribution which approximates the posterior

distribution.

The likelihood LðYjhÞ describes the probability of the data for a

given realization of the modelMðhÞ, and we can use the fact that the

data are uncertain to derive an expression like

LðYjhÞ ¼
Y
t

PðYt;l ¼ YtðhÞ;r2 ¼ VtÞ eqn 6

whereP is a parametric probability distribution, typically with first and

secondmoments l andr2,Yt is data item t and Vt is the variance asso-
ciated withYt.
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Often the data Y contain multiple data series, for example time-

course observations of different state variables, following different

probability distributions. In this case, the likelihood becomes the pro-

duct over all series and each data item in each series s

LðYjhÞ ¼
Y
s

Y
t

PsðYs;t;ls ¼ Ys;tðhÞ;r2
s ¼ Vs;tÞ: eqn 7

Implementation

deBInfer provides a framework for dynamical models con-

sisting of a deterministic DE model and a stochastic observa-

tion model. To perform inference using deBInfer, the user

must specify R functions or data structures representing the

DE model, an observation model and thus the data likelihood

and declare all model and observation parameters, including

prior distributions for those parameters that are to be esti-

mated. The DE model itself can also be provided as a shared

object, for example a compiled C function. deBInfer takes

these inputs and performs MCMC to sample from the poste-

rior distributions of parameters, solving theDEmodel numeri-

cally within the MCMC procedure. The MCMC procedure

for deBInfer offers independent as well as random-walk

Metropolis–Hastings updates and is implemented fully in R (R

Core Team 2015). Background on Metropolis–Hastings

MCMC is widely available in the literature (e.g. Clark 2007;

Brooks et al. 2011).

As numerically solving the DE model is the most computa-

tionally costly step, we made two slight modifications to the

basic Metropolis–Hastings algorithms. (i) deBInfermakes a

distinction between the parameters of the DE model hDE, and

the observation parameters hobs, invoking the solver only for

updates of the former, and (ii) the prior probability of each

parameter proposal from the random-walk sampler is evalu-

ated before the posterior density and the acceptance ratio are

calculated. This allows the rejection of proposals outside the

prior support without invoking the numerical solver. The algo-

rithm is outlined in Table 1.

deBInfer provides a choice of three proposal distributions

q for the first step in the algorithm, a normalNðhðkÞ;r2
propÞ, an

asymmetric uniform Uðab hðkÞ; ba hðkÞÞ and a multivariate normal

NðhðkÞ;RÞ. deBInfer requires manual tuning; that is, the

variance components r2
prop, a and b, and Σ, respectively, are

user-specified inputs. The asymmetric uniform distribution is

useful for proposals of parameters that are strictly positive,

such as variances, and themultivariate normal is useful for effi-

ciently sampling parameters that are strongly correlated, as is

often the case forDEmodel parameters.

Asimple example – logistic population growth

We illustrate the steps needed to perform inference for a DE

model, by conducting inference on the logistic model (ac-

knowledging that the existence of a closed form solution to this

DEmakes this an artificial example):

dN

dt
¼ rN 1�N

K

� �
: eqn 8

Annotated code to implement this model, simulate observa-

tions from it and conduct the inference is provided as a pack-

age vignette (Appendix S1, Supporting Information). An

overview of the core functions available in deBInfer is pro-

vided in Table 2.

INSTALLATION

The deBInfer package is available on CRAN. The develop-

ment version can be installed from github using devtools

(Wickham & Chang 2016), which can be installed from

CRAN

#InstalltheCRANrelease.

install.packages("deBInfer")

#Alternativelyinstalldevtoolsandthedevelopment

versionofdeBInfer.

install.packages("devtools")

devtools::install_github("pboesu/debinfer")

#LoaddeBInfer.

library(deBInfer)

SPECIF ICATION OF THE DIFFERENTIAL

EQUATION MODEL

deBInfer makes use of the deSolve and PBSddesolve

packages (Soetaert, Petzoldt & Setzer 2010; Couture-Beil et al.

2014) to numerically solve ODE and DDE models. The DE

model has to be specified as a function containing the model

equations, following the guidelines given in the respective

package documentations. For our simple example, the func-

tion takes three inputs: time, a vector of time points at which

to evaluate the DE; y, a vector containing the initial value for

the state variable N; and parms, a vector containing the

parameters r andK.

logistic_model <-function(time,y,parms) {

with(aas.list(c(y,parms)), {

dN <-r*N*(1-N/K)

list(dN)

})

}

Table 1. Implementation of the random-walk Metropolis–Hastings

algorithm. The transition from a parameter value hðkÞ in the Markov

chain at step k to its value at step k+1 proceeds via the outlined steps. q

is a conditional density, the so-called proposal distribution

1. Generate a proposal hð�Þ � qðhð�ÞjhðkÞÞ
2. Evaluate the prior probability Prðhð�ÞÞ
3. if Prðhð�ÞÞ ¼ 0

Let hðkþ1Þ  hðkÞ

4. if Prðhð�ÞÞ 6¼ 0

if h 2 hDE: solve theDEmodel

Let hðkþ1Þ  hð�Þ with probability qðhðkÞ; hð�ÞÞ;
hðkÞ with probability 1� qðhðkÞ; hð�ÞÞ;

�
where qðhðkÞ; hð�ÞÞ ¼ min Prðhð�Þ jYÞ

PrðhðkÞ jYÞ
qðhðkÞ jhð�ÞÞ
qðhð�Þ jhðkÞÞ ; 1

n o
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OBSERVATION MODEL AND LIKEL IHOOD

SPECIF ICATION

For the purpose of demonstration, we will conduct inference

on simulated observations from this model assuming log-nor-

mal noise with a standard deviation r2
obs. A set of simulated

observations is provided with the package and can be loaded

with the command data(logistic). The appropriate log-

likelihood takes the form

‘ðYjhÞ ¼
X
t

ln
1

~Ntrobs

ffiffiffiffiffiffi
2p
p exp �ðln

~Nt � lnðNt þ eÞÞ2
2r2

obs

 ! !

eqn 9

where ~Nt are the observations, and Nt are the predictions of

theDEmodel given the currentMCMC sample of the parame-

ters h. Further, ɛ� 1 is a small correction needed, because the

exactDE solution can equal zero (or less, depending on numer-

ical precision of the solver). ɛ should therefore be at least as

large as the expected numerical precision of the solver. We

chose e ¼ 10�6, which is on the same order as the default

numerical precision of the default solver (deSolve::ode

with method = “lsoda"), but we found that the inference

results were insensitive to this choice as long as ɛ ≤ 0�01
(Appendix S1, Conclusion).

The deBInfer observation model template requires three

inputs: a data.frame of observations, data; the simulated

trajectory returned by the numerical solver in MCMC proce-

dure, sim.data; and the current sample of the parameters,

samp. The user specifies the observation model such that it

returns the summed log-likelihoods of the data. In this exam-

ple, the observations are in the data.frame column

N_noisy, and the corresponding predicted states are in the

column N of the matrixlike object sim.data (see

Appendix S1).

#loadexampledata

data(logistic)

#userdefineddatalikelihood

logistic_obs_model <-function(data,sim.data,

samp){

epsilon <-1e-6

llik <-sum(dlnorm(data$N_noisy,meanlog =log

(sim.data[,"N"]+epsilon),

sdlog =samp[["sdlog.N"]],log =TRUE))

return(llik)

}

PARAMETER, PRIOR AND SAMPLER SPECIF ICATION

All parameters that are used in the DE model and the

observation model need to be declared for the inference

procedure using the debinfer_par() function. The dec-

laration describes the variable name, whether it is a DE or

observation parameter and whether or not it is to be esti-

mated. If the parameter is to be estimated, the user also

needs to specify a prior distribution and a number of addi-

tional parameters for the MCMC procedure. deBInfer

currently supports priors from all probability distributions

implemented in base R, as well as their truncated variants,

as implemented in the truncdist package (Novomestky

& Nadarajah 2012).

We declare the DE model parameter r, assign a prior

r�Nð0; 1Þ and a random-walk sampler with a Normal kernel

(samp.type=“rw") and proposal variance of 0�005 with the

command

r <-debinfer_par(name ="r",var.type ="de",fixed =

FALSE,value =0.5,prior ="norm",hypers =list(mean

=0,sd =1),prop.var =0.005,samp.type ="rw")

Similarly, we declareK� lnNð1; 1Þ andr2
obs� lnNð0; 1Þ.

K <-debinfer_par(name ="K",var.type ="de",fixed =

FALSE,value =5,prior ="lnorm",hypers =list

(meanlog =1,sdlog =1),prop.var =0.1,samp.type =

"rw")

sdlog.N <-debinfer_par(name ="sdlog.N",var.type =

"obs",fixed =FALSE,value =0.1,prior ="lnorm",

hypers =list(meanlog =0,sdlog =1),prop.var= c

(3,4),samp.type ="rw-unif")

Note that we are using the asymmetric uniform proposal

distribution for the variance parameter (samp.

type="rwunif"), as this ensures strictly positive propos-

als. Lastly, we provide an initial value N0 = 0�1 for the

DE:

N <-debinfer_par(name ="N",var.type ="init",fixed =

TRUE,value =0.1)

Table 2. Anoverview of themain functions available in deBInfer

Function Description

debinfer_par Creates a data structure representing an individual parameter or initial value of theDEmodel, or an

observation parameter, and the corresponding values, priors, etc.

setup_debinfer Combinesmultiple parameter declarations into an input object for inference

de_mcmc ConductsMCMC inference on aDEmodel and returns an object of the class debinfer_result

plot.debinfer_result Plots traces and posterior densities (wrapper forcoda::plot.mcmc)

summary.debinfer_result Summary statistics forMCMC samples (wrapper forcoda::summary.mcmc)

pairs.debinfer_result Pairwise plots and correlations ofmarginal posterior distributions

post_prior_densplot Overlay of posterior and prior densities for free parameters

post_sim Simulate posterior trajectories of theDEmodel and summary statistics thereof

plot.post_sim_list Plot posteriorDEmodel trajectories

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 511–518
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MCMC INFERENCE

The MCMC procedure is called using the function

de_mcmc() which takes the declared parameters, the DE

and observational models, the data and further optional

arguments to the MCMC procedure and/or the solver as

inputs and returns an array containing the resulting

MCMC samples.

All declared parameters are collated using setup_

debinfer()

mcmc.pars <-setup_debinfer(r,K,sdlog.N,N)

and passed to de_mcmc() which is set to use deSolve::

ode() as a back end in this case, as specified by the argument

solver="ode"

#doinferencewithdeBInfer

#MCMCiterations

iter <-5000

#inferencecall

mcmc_samples <-de_mcmc(N =iter,data =logistic,

de.model =logistic_model,

obs.model =logistic_obs_model,all.params =

mcmc.pars,

Tmax =max(logistic$time),data.times =logistic

$time,

cnt =500,plot =FALSE,solver ="ode")

INFERENCE OUTPUTS

The inference function returns an object of class

debinfer_result, which contains the posterior sam-

ples in a format compatible with the coda package

(Plummer et al. 2006), as well as the DE and observation

models and all parameters used for inference. This allows

the use of the diagnostic functions and plotting routines

provided in coda (see Fig. 1). We also provide

additional functions and methods such as pairs.

debinfer_result()to create pairwise plots of the

marginal posterior distributions, which show correlations

between individual parameters (see Fig. 2),

post_prior_densplot(), which allows a visual com-

parison between prior and marginal posterior densities

for each parameter, and post_sim(), which simulates

posterior model trajectories and associated credible inter-

vals, as well as plotting methods for the latter (see

Fig. 3).

Example application –DDEmodel of fungal
population growth

To illustrate applications of deBInfer beyond the simplistic

example above, we outline inference procedures for a more

complex model and corresponding observational data. Full
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Fig. 1. Markov chainMonte Carlo traces and

posterior density plots for the logistic model.

Figures like this one can be created using

plot.debinfer_result.
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model details and annotated code can be found in

Appendix S2. Our example demonstrates parameter inference

for aDDEmodel of population growth in the environmentally

sensitive fungal pathogen Batrachochytrium dendrobatidis

(Bd), which causes the amphibian disease chytridiomycosis

(Rosenblum et al. 2010; Voyles et al. 2012). This model has

been used to further our understanding of pathogen responses

to changing environmental conditions. Further details about

the model development, and the experimental procedures

yielding the data used for parameter inference, can be found in

Voyles et al. (2012).

The model follows the dynamics of the concentration

of an initial cohort of zoospores, C, the concentration of

zoospore-producing sporangia, S, and the concentration

of zoospores in the next generation Z. The initial cohort of

zoospores, C, starts at a known concentration, and

zoospores in this initial cohort settle and become sporangia

at rate sr, or die at rate lZ. fs is the fraction of sporangia

that survive to the zoospore-producing stage. We assume

that it takes a minimum of Tmin days before the sporangia

produce zoospores, after which they produce zoospores at

rate g. Zoospore-producing sporangia die at rate ds. The

concentration of zoospores, Z, is the only state variable

measured in the experiments, and it is assumed that these

zoospores settle (sr) or die (lZ) at the same rates as the ini-

tial cohort of zoospores. The equations that describe the

population dynamics are as follows:

dC

dt
¼ �ðsr þ lZÞCðtÞ eqn 10

dS

dt
¼ srfsCðt� TminÞ � dsSðtÞ eqn 11

dZ

dt
¼ gSðtÞ � ðsr þ lZÞZðtÞ eqn 12

Because the observations are counts of zoospores (i.e. discrete

numbers), we assume that observations of the system at a set

of discrete times t0 are independent Poisson random variables

with a mean given by the solution of the DDE, at times t0. The
log-likelihood of the data given the parameters, underlying

model and initial conditions is then a sum over the n observa-

tions at each time point in t0

‘ðZjhÞ ¼
Xn
t

Zt log k� nk eqn 13

In this case, we conduct inference using deSolve::dede()

as the back end to de_mcmc. The marginal posteriors of the

estimated parameters are presented in Fig. 4, and posterior tra-

jectories for themodel are presented in Fig. 5.

Known limitations

TheMCMC sampler is implemented in R, whichmakes it con-

siderably slower than samplers written in compiled languages,

for example those underlying packages such as Stan (Carpen-

ter et al. 2016) or Filzbach (Purves & Lyutsarev 2016). For

inference conducted purely in R, the computational bottleneck

is solving the DE model numerically. However, even for rela-

tively simple models, a 5- to 10-fold speedup of the inference

procedure can be achieved using compiled DE models (see

Appendix S3). Furthermore, the debinfer MCMC algo-

rithm is not adaptive and requires manual tuning. Lastly, sam-

pling using the Metropolis–Hastings MCMC algorithm itself

can be inefficient in the presence of strong parameter correla-

tions. Alternative approaches such as Hamiltonian MC (Car-

penter et al. 2016) or particle-filteringmethods (e.g. King et al.

2016) may offer more efficient means for parameter estimation

in ODEs in these cases. Nonetheless, the package is able to fit

real-world problems in amatter of minutes to hours on current

desktop hardware, which is acceptable for many applications,

while providing flexible inference for both ODE and DDE

models.
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Fig. 2. Pairwise plot of themarginal posterior distributions. This figure

was created usingpairs.debinfer_result.
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Fig. 3. Posterior model trajectory (median with 95% highest posterior

density interval), created with plot.post_sim_list, and the data

points used for fitting.
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Conclusion

Understanding the mechanisms underlying biological sys-

tems, and ultimately, predicting their behaviours in a chang-

ing environment, requires overcoming the gap between

mathematical models and experimental or observational

data. We believe that Bayesian inference provides a powerful

tool for fitting dynamical models and selecting between com-

peting models. The deBInferR package provides a suite of

tools to this end in a programming language that is wide-

spread in many biological disciplines. We hope that our

package will lower the hurdle to the uptake of this inference

approach for empirical biologists. We encourage users to

report bugs and provide other feedback on the project issue

page: https://github.com/pboesu/debinfer/issues
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Supporting Information

Additional Supporting Information may be found online in the support-

ing information tab for this article:

Appendix S1. Annotated code for the logistic DE example (It can be

displayed after installing deBInferwith the R command: vignette

(“logistic_ode_example",package=“deBInfer")).

Appendix S2. Annotated code for the DDE example (It can be dis-

played after installing deBInfer with the R command: vignette

(“chytrid_dede_example",package=“deBInfer")).

Appendix S3. Inference for a compiled DE model (It can be displayed

after installing deBInfer with the R command: vignette

(“deBInfer_compiled_code",package=“deBInfer")).
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